An intracellular chemical signal can be produced in the cell membrane. Once it is produced, where does it go?

A. To a different cell

B. To another part of the same cell

C. To a region right outside the cell

D. To an area with a high ion concentration

For those aiming to excel in their ATI TEAS test and secure admission into their desired nursing program, ExamGates offers an invaluable resource. Our platform features practice questions meticulously crafted by tutors who have previously aced the exam themselves. With ExamGates, you can access content that is 100% relevant to the test, accompanied by vivid images and illustrations. Additionally, our platform provides comprehensive explanations for both correct and incorrect answers, empowering you to fully grasp the material and optimize your study efforts. Take the first step towards your nursing aspirations with ExamGates today.

Answer Explanation:

There are two major types of receptor molecules that respond to an intercellular chemical signal:

  • Intracellular receptors: These receptors are located in either the cytoplasm or the nucleus of the cell. Signals diffuse across the cell membrane and bind to the receptor sites on intracellular receptors, of the same cell.
  • Membrane-bound receptors: These receptors extend across the cell membrane, with their receptor sites on the outer surface of the cell membrane. They respond to intercellular chemical signals that are large, water-soluble molecules that do not diffuse across the cell membrane.

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science Practice Test 2

Question 1:

Which sequence describes the hierarchy level of biological organization?

A. Kingdom, phylum, class, order, family, genus, and species

B. Genus, class, kingdom, species, order, phylum, and family

C. Genus, class, kingdom, species, order, phylum, and family

D. Species, kingdom, genus, class, family, phylum, and order

The Correct Answer is A.

Taxonomy is the process of classifying, describing, and naming organisms. There are seven levels in the Linnaean taxonomic system, starting with the broadest level, kingdom, and ending with the species level. For example, in the image the genus level contains two types of bears, but the species level shows one type. Additionally, organisms in each level are found in the level above it. For example, organisms in the order level are part of the class level. This classification system is based on physical similarities across living things. It does not account for molecular or genetic similarities.


Question 2:

If a person smells something sweet, what form of information is this initially perceived as in the nervous system?

A. Cognitive

B. Integrative

C. Motor

D. Sensory

The Correct Answer is D.

A sensory nerve is a nerve that carries sensory signals from the external environment to the brain to the central nervous system. It is also an afferent nerve, long dendrites of sensory neurons, which sends sensory information towards the central nervous system (CNS). This information is what is sensed, using the five senses from external environment, sight, sound, smell, taste, and touch.

Motor nerves have only efferent fibers, long axons of motor neurons, that carry impulses away from the CNS to the effectors, which are typically tissues and muscles of the body.

Interneurons are nerve cells that act as a bridge between motor and sensory neurons in the CNS. These neurons help form neural circuits, which helps neurons communicate with each other.


Question 3:

Blood oxygen levels are most likely low when blood _____.

A. leaves the aorta

B. fills the right atrium

C. reaches body tissues

D. flows through arteries

The Correct Answer is B.

Blood continually flows in one direction, beginning in the heart and proceeding to the arteries, arterioles, and capillaries. When blood reaches the capillaries, exchanges occur between blood and tissues. After this exchange happens, blood is collected into venules, which feed into veins and eventually flow back to the heart’s atrium. The heart must relax between two heartbeats for blood circulation to begin.

Two types of circulatory processes occur in the body:

Systemic circulation

  • The pulmonary vein pushes oxygenated blood into the left atrium.
  • As the atrium relaxes, oxygenated blood drains into the left ventricle through the mitral valve. 3. The left ventricle pumps oxygenated blood to the aorta.
  • Blood travels through the arteries and arterioles before reaching the capillaries that surround the tissues.

Pulmonary circulation

  • Two major veins, the Superior Vena Cava and the Inferior Vena Cava, brings deoxygenated blood from the upper and lower half of the body.
  • Deoxygenated blood is pooled into the right atrium and then sent into the right ventricle through the tricuspid valve, which prevents blood from flowing backward.
  • The right ventricle contracts, causing the blood to be pushed through the pulmonary valve into the pulmonary artery.
  • Deoxygenated blood becomes oxygenated in the lungs.
  • Oxygenated blood returns from the lungs to the left atrium through the pulmonary veins.


Question 4:

Why did it take many years for the cell theory to be developed?

A. Advancements in microscopy took place slowly.

B. Cells were difficult to isolate for experimental analysis

C. Researchers believed a cell formed from preexisting cells

D. Scientists already proved that cells were essential for life.

The Correct Answer is A.

Robert Hooke discovered the first cells in the mid-eighteenth century. The cell theory is a theory because it is supported by a significant number of experimental findings. The cell theory took many years to be developed because microscopes were not powerful enough to make such observations.

This theory, or in-depth explanation, about cells consists of three parts:

  • All living things are composed of one or more cells.
  • Cells are alive and represent the basic unit of life.
  • All cells are produced from pre-existing cells.

 


Question 5:

Which choice best describes homeostasis?

A. A functional system of the body

B. Blood flow to every cell in the body

C. A relatively constant environment within the body

D. Neural pathways that have integrated into the body

The Correct Answer is C.

Homeostasis is the existence and maintenance of a relatively constant environment within the body. Each cell of the body is surrounded by a small amount of fluid, and the normal functions of each cell depend on the maintenance of its fluid environment within a narrow range of conditions, including temperature, volume, and chemical content. These conditions are known as variables. For example, body temperature is a variable that can increase in a hot environment or decrease in a cold environment.

There are two types of feedback mechanisms in the human body: negative and positive.

  • Negative Feedback: Most systems of the body are regulated by negative feedback mechanisms, which maintain homeostasis. Negative means that any deviation from the set point is made smaller or is resisted. The maintenance of normal blood pressure is a negative-feedback mechanism. Normal blood pressure is important because it is responsible for moving blood from the heart to tissues.
  • Positive Feedback: Positive-feedback mechanisms are not homeostatic and are rare in healthy individuals. Positive means that when a deviation from a normal value occurs, the response of the system is to make the deviation even greater. Positive feedback therefore usually creates a cycle leading away from homeostasis and, in some cases, results in death. Inadequate delivery of blood to cardiac muscle is an example of positive feedback.

Question 6:

Which of the following is a component of a chromosome?

A. Centromere

B. Gamete

C. Homologue

D. Ribose

The Correct Answer is A.

The protein disc that holds two sister chromatids together is what collectively makes a chromosome. A gene is a segment of DNA, deoxyribonucleic acid, which transmits information from parent to offspring. A single molecule of DNA has thousands of genes. A chromosome is a rod-shaped structure that forms when a single DNA molecule and its associated proteins coil tightly before cell division.

Chromosomes have two components:

  • Chromatids: two copies of each chromosome
  • Centromeres: protein discs that attach the chromatids together

Human cells have 23 sets of different chromosomes. The two copies of each chromosome are called homologous chromosomes, or homologues. An offspring receives one homologue from each parent. When a cell contains two homologues of each chromosome, it is termed diploid (2n). A haploid (n) cell contains only one homologue of each chromosome. The only haploid cells humans have are the sperm and eggs cells known as gametes.


Question 7:

In the following single-replacement reaction, ______ replaces ______.

Cl2+2NaI→2NaCl+I2

A. sodium, iodine

B. chlorine, iodine

C. chlorine, sodium

D. sodium, chlorine

The Correct Answer is B.

In this reaction, chlorine (Cl2) is an element in the reaction that replaces iodine in the compound sodium iodide (NaI). This allows chlorine to form a compound with sodium (NaCl) and leaves iodine (I2) as an element. 

Synthesis reactions involve two or more reactants (A and B) combining to form one product (AB). In the example provided, hydrogen (H2) and oxygen (O2) begin as separate elements. At the end of the reaction, the hydrogen and oxygen atoms are bonded in a molecule of water (H2O).

Decomposition reactions have only one reactant (AB) that breaks apart into two or more products (A and B). In the example above, hydrogen peroxide (H2O2) breaks apart into two smaller molecules: water (H2O) and oxygen (O2).

Single-replacement reactions involve two reactants, one compound (AB) and one element (C). In this type of reaction, one element replaces another to form a new compound (AC), leaving one element by itself (B). In the example, zinc replaces hydrogen in hydrochloric acid (HCl). As a result, zinc forms a compound with chlorine, zinc chloride (ZnCl2), and hydrogen (H2) is left by itself.

Double-replacement reactions involve two reactants, both of which are compounds made of two components (AB and CD). In the example, silver nitrate, composed of silver (Ag1+) and nitrate (NO31-) ions, reacts with sodium chloride, composed of sodium (Na1+) and chloride (Cl1-) ions. The nitrate and chloride ions switch places to produce two compounds that are different from those in the reactants.

Combustion reactions occur when fuels burn, and they involve specific reactants and products, as seen in the examples below. Some form of fuel that contains carbon and hydrogen is required. Examples of such fuels are methane, propane in a gas grill, butane in a lighter, and octane in gasoline. Notice that these fuels all react with oxygen, which is necessary for anything to burn. In all combustion reactions, carbon dioxide, water, and energy are produced. When something burns, energy is released, which can be felt as heat and seen as light.


Question 8:

Fertilization (the fusing of one sperm and an ovum) results in a(n) _____.

A. embryo

B. fetus

C. infant

D. zygote

The Correct Answer is D.

Human intercourse consists of the male introducing sperm into the female’s reproductive system. Sperm may then pass through the female’s reproductive system to the Fallopian tubes where one sperm fertilizes an ovum, creating a zygote. The zygote passes out of the Fallopian tube and implants into the uterine wall to begin gestation. Over nine months, the zygote develops and grows into an embryo and then a fetus. An infant is the baby that is born.


Question 9:

The sequence of amino acids in a gene determines

A. the primary structure of a codon

B. the primary structure of a protein

C. the primary structure of a nucleotide

D. the primary structure of a nucleic acid.

The Correct Answer is B.

The sequence of amino acids in a gene determines the primary structure of a protein. The components necessary for translation are located in the cytoplasm. Translation is the making of proteins by mRNA binding to a ribosome with the start codon that initiates the production of amino acids. A peptide bond forms and connects the amino acids together. The sequence of amino acids determines the protein’s structure, which determines its function.


Question 10:

As soon as an invader, known as a(n) _____, enters the body, the body begins to fight.

A. antibody

B. pathogen

C. trigger

D. vaccination

The Correct Answer is B.

Pathogen is an infectious foreign body that enters the body and causes disease or illness to the person. There are five types of pathogens: viruses, bacteria, fungi, protozoa, and worms. Pathogens have antigen proteins found on their surface and are unique to each pathogen.

Antibody is a protein produced by the body’s immune system when it detects harmful substances (antigens). There are many different antibodies found in the body. Each one is unique and protects the body against the specific antigen that it detects at any given time. If there are no antibodies for a specific antigen, the more likely you are to develop an illness.

Vaccinations are the introduction of a dead or disabled pathogen or of a harmless microbe with the protein of a pathogen on its surface into the body. Often administered through needle injection, to stimulate the immune system to produce immunity to a specific disease Immunity protects the body from a disease when exposed to it.

There are four types of immunity: natural/passive, natural/active, artificial/passive, and artificial/ active.

  • Natural/passive – Babies receive immunities from breastmilk.
  • Natural/active – The body produces antibodies to combat an illness when a person becomes sick.
  • Artificial/passive – This immunity is temporary and requires doses of serum to maintain the immunity.
  • Artificial/active – A vaccination provides artificial/active immunity.