As soon as an invader, known as a(n) _____, enters the body, the body begins to fight.

A. antibody

B. pathogen

C. trigger

D. vaccination

For those aiming to excel in their ATI TEAS test and secure admission into their desired nursing program, ExamGates offers an invaluable resource. Our platform features practice questions meticulously crafted by tutors who have previously aced the exam themselves. With ExamGates, you can access content that is 100% relevant to the test, accompanied by vivid images and illustrations. Additionally, our platform provides comprehensive explanations for both correct and incorrect answers, empowering you to fully grasp the material and optimize your study efforts. Take the first step towards your nursing aspirations with ExamGates today.

Answer Explanation:

Pathogen is an infectious foreign body that enters the body and causes disease or illness to the person. There are five types of pathogens: viruses, bacteria, fungi, protozoa, and worms. Pathogens have antigen proteins found on their surface and are unique to each pathogen.

Antibody is a protein produced by the body’s immune system when it detects harmful substances (antigens). There are many different antibodies found in the body. Each one is unique and protects the body against the specific antigen that it detects at any given time. If there are no antibodies for a specific antigen, the more likely you are to develop an illness.

Vaccinations are the introduction of a dead or disabled pathogen or of a harmless microbe with the protein of a pathogen on its surface into the body. Often administered through needle injection, to stimulate the immune system to produce immunity to a specific disease Immunity protects the body from a disease when exposed to it.

There are four types of immunity: natural/passive, natural/active, artificial/passive, and artificial/ active.

  • Natural/passive – Babies receive immunities from breastmilk.
  • Natural/active – The body produces antibodies to combat an illness when a person becomes sick.
  • Artificial/passive – This immunity is temporary and requires doses of serum to maintain the immunity.
  • Artificial/active – A vaccination provides artificial/active immunity.

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science Practice Test 2

Question 1:

When would a cell most likely contain the most nucleotides?

A. S

B. G1

C. M

D. G2

The Correct Answer is B.

A cell copies its DNA during the S phase, and nucleotides are the building blocks of DNA. Thus, the step preceding the S phase, the G1 phase, is the phase of the cell cycle when the cell would contain the most nucleotides.

For a cell to divide into more cells, it must grow, copy its DNA, and produce new daughter cells. The cell cycle regulates cellular division. This process can either prevent a cell from dividing or trigger it to start dividing.

The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase.

  • G1: The first gap phase, during which the cell prepares to copy its DNA
  • S: The synthesis phase, during which DNA is copied
  • G2 : The second gap phase, during which the cell prepares for cell division

It may appear that little is happening in the cell during the gap phases. Most of the activity occurs at the level of enzymes and macromolecules. The cell produces things like nucleotides for synthesizing new DNA strands, enzymes for copying the DNA, and tubulin proteins for building the mitotic spindle. During the S phase, the DNA in the cell doubles, but few other signs are obvious under the microscope. All the dramatic events that can be seen under a microscope occur during the M phase: the chromosomes move, and the cell splits into two new cells with identical nuclei.


Question 2:

Blood oxygen levels are most likely low when blood _____.

A. leaves the aorta

B. fills the right atrium

C. reaches body tissues

D. flows through arteries

The Correct Answer is B.

Blood continually flows in one direction, beginning in the heart and proceeding to the arteries, arterioles, and capillaries. When blood reaches the capillaries, exchanges occur between blood and tissues. After this exchange happens, blood is collected into venules, which feed into veins and eventually flow back to the heart’s atrium. The heart must relax between two heartbeats for blood circulation to begin.

Two types of circulatory processes occur in the body:

Systemic circulation

  • The pulmonary vein pushes oxygenated blood into the left atrium.
  • As the atrium relaxes, oxygenated blood drains into the left ventricle through the mitral valve. 3. The left ventricle pumps oxygenated blood to the aorta.
  • Blood travels through the arteries and arterioles before reaching the capillaries that surround the tissues.

Pulmonary circulation

  • Two major veins, the Superior Vena Cava and the Inferior Vena Cava, brings deoxygenated blood from the upper and lower half of the body.
  • Deoxygenated blood is pooled into the right atrium and then sent into the right ventricle through the tricuspid valve, which prevents blood from flowing backward.
  • The right ventricle contracts, causing the blood to be pushed through the pulmonary valve into the pulmonary artery.
  • Deoxygenated blood becomes oxygenated in the lungs.
  • Oxygenated blood returns from the lungs to the left atrium through the pulmonary veins.


Question 3:

What organelle is only associated with plant cells?

A. Cell wall

B. Ribosome

C. Cytoplasm

D. Golgi apparatus

The Correct Answer is A.

Only plant cells have cell walls, which help protect the cell and provide structural support.  The cell wall also enforces the overall structural integrity of the plant cell, and it is found outside the cell membrane. The next organelle is a chloroplast. It is found in the cytoplasm of only plant cells. Chloroplasts are photosynthetic compounds used to make food for plant cells by harnessing energy from the sun. These organelles play a role in photosynthesis.


Question 4:

What phase is the cell cycle part of?

A. Interphase

B. Metaphase

C. Prophase

D. Telophase

The Correct Answer is A.

Before mitosis or meiosis occurs, interphase must happen. This is when the cell cycle takes place. The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase. 


Question 5:

An atom has 28 protons, 32 neutrons, and 28 electrons. What is the name of this isotope?

A. Nickel-32

B. Nickel-60

C. Germanium-56

D. Germanium-60

The Correct Answer is B.

The number of protons, 28, gives the atomic number, which identifies this atom as nickel. The mass is the number after the dash in the isotope name, which is determined by adding the numbers of protons and neutrons (28 + 32 = 60).


Question 6:

Which of the following is supported by the cell theory?

A. Cells are alive and recognized as the building blocks for life.

B. Scientists can identify and differentiate cells by using a microscope

C. Cells are produced from existing cells using meiosis instead of mitosis.

D. Living things are composed of a single cell that remains undifferentiated

The Correct Answer is A.

After scientists were able to view cells under the microscope they formulated the cell theory. One part of this theory concluded that all cells are alive. They also represent the basic unit of life.

All living things are made of cells. Cells are the smallest structural units and basic building blocks of living things. Cells contain everything necessary to keep living things alive. Varying in size and shape, cells carry out specialized functions. This theory, or in-depth explanation, about cells consists of three parts:

  • All living things are composed of one or more cells.
  • Cells are alive and represent the basic unit of life.
  • All cells are produced from pre-existing cells.

 


Question 7:

During which of the following phase changes will the cohesion between the particles in a substance decrease?

A. Condensation

B. Deposition

C. Freezing

D. Vaporization

The Correct Answer is D.

If the cohesion between particles decreases, then the particles must be undergoing a phase change that allows particles to move farther apart. This happens when a substance vaporizes and turns from liquid to gas. Any phase change that moves to the right in the diagram above requires energy to be added to the system because the substance has more energy at the end of the phase change. The phase changes are meltingvaporization (boiling), and sublimation. When energy is added, particles move faster and can break away from each other more easily as they move to a state of matter with a higher amount of energy. This is most commonly done by heating the substance. 


Question 8:

What type of reaction is described by the following equation?

ZnBr2(aq) + 2KOH(aq) → Zn(OH)2(s) + 2KBr(aq)

A. Synthesis

B. Decomposition

C. Single-Replacement

D. Double-Replacement

The Correct Answer is D.

In this reaction, two elements are trading places hence double-replacement. In the reactants, zinc and bromide ions are together, and potassium and hydroxide ions are together. In the products, zinc and hydroxide ions are together, and potassium and bromide ions are together.


Question 9:

Which of the following types of tissues include cells of the immune system and of the blood?

A. Connective

B. Epithelial

C. Muscle

D. Neural

The Correct Answer is A.

tissue is a group of cells with similar structure and function and similar extracellular substances located between the cells. The table below describes the four primary tissues found in the human body.

body.


Question 10:

Which choice best describes homeostasis?

A. A functional system of the body

B. Blood flow to every cell in the body

C. A relatively constant environment within the body

D. Neural pathways that have integrated into the body

The Correct Answer is C.

Homeostasis is the existence and maintenance of a relatively constant environment within the body. Each cell of the body is surrounded by a small amount of fluid, and the normal functions of each cell depend on the maintenance of its fluid environment within a narrow range of conditions, including temperature, volume, and chemical content. These conditions are known as variables. For example, body temperature is a variable that can increase in a hot environment or decrease in a cold environment.

There are two types of feedback mechanisms in the human body: negative and positive.

  • Negative Feedback: Most systems of the body are regulated by negative feedback mechanisms, which maintain homeostasis. Negative means that any deviation from the set point is made smaller or is resisted. The maintenance of normal blood pressure is a negative-feedback mechanism. Normal blood pressure is important because it is responsible for moving blood from the heart to tissues.
  • Positive Feedback: Positive-feedback mechanisms are not homeostatic and are rare in healthy individuals. Positive means that when a deviation from a normal value occurs, the response of the system is to make the deviation even greater. Positive feedback therefore usually creates a cycle leading away from homeostasis and, in some cases, results in death. Inadequate delivery of blood to cardiac muscle is an example of positive feedback.