In which state of matter are the intermolecular forces between particles in a substance the strongest?

A. Gas

B. Liquid

C. Plasma

D. Solid

For those aiming to excel in their ATI TEAS test and secure admission into their desired nursing program, ExamGates offers an invaluable resource. Our platform features practice questions meticulously crafted by tutors who have previously aced the exam themselves. With ExamGates, you can access content that is 100% relevant to the test, accompanied by vivid images and illustrations. Additionally, our platform provides comprehensive explanations for both correct and incorrect answers, empowering you to fully grasp the material and optimize your study efforts. Take the first step towards your nursing aspirations with ExamGates today.

Answer Explanation:

In solids, particles are usually closer together than in other states of matter because of the strong cohesive forces between the particles.

  • Solids, liquids, gases, and plasmas differ from one another in the amount of energy that the particles have and the strength of the cohesive forces that hold the particles together.
  • Cohesion is the tendency of particles of the same kind to stick to each other.
  • A solid has the lowest amount of energy because its particles are packed close together. Liquids have more energy than a solid, and gases have more energy than solids or liquids because the cohesive forces are very weak.

Therefore, the Correct Answer is D.

More Questions on TEAS 7 Science Practice Test 2

Question 1:

What type of reaction is described by the following equation?

ZnBr2(aq) + 2KOH(aq) → Zn(OH)2(s) + 2KBr(aq)

A. Synthesis

B. Decomposition

C. Single-Replacement

D. Double-Replacement

The Correct Answer is D.

In this reaction, two elements are trading places hence double-replacement. In the reactants, zinc and bromide ions are together, and potassium and hydroxide ions are together. In the products, zinc and hydroxide ions are together, and potassium and bromide ions are together.


Question 2:

What structure plays a role in air conduction?

A. Alveolus

B. Capillary

C. Lung

D. Trachea

The Correct Answer is D.

The primary function of the respiratory system is to provide oxygen to and remove carbon dioxide from the body. In addition to gas exchange, the respiratory system enables a person to breathe. Breathing, or inhalation, is essential to life. It is the mechanism that provides oxygen to the body. Without oxygen, cells are unable to perform their functions necessary to keep the body alive. The primary muscle of inspiration is the diaphragm. Known as the chest cavity, this dome shaped structure flattens when it contracts. The rib cage moves outward, allowing outside air to be drawn into the lungs. During relaxation, the diaphragm returns to its dome shape and the rib cage moves back to its natural position. This causes the chest cavity to push air out of the lungs.

The respiratory system can be functionally divided into two parts:

  • Air-conducting portion: Air is delivered to the lungs. This region consists of the upper and lower respiratory tract—specifically, the larynx, trachea, bronchi, and bronchioles.
  • Gas exchange portion: Gas exchange takes place between the air and the blood. This portion includes the lungs, alveoli, and capillaries.

Question 3:

Which choice best describes homeostasis?

A. A functional system of the body

B. Blood flow to every cell in the body

C. A relatively constant environment within the body

D. Neural pathways that have integrated into the body

The Correct Answer is C.

Homeostasis is the existence and maintenance of a relatively constant environment within the body. Each cell of the body is surrounded by a small amount of fluid, and the normal functions of each cell depend on the maintenance of its fluid environment within a narrow range of conditions, including temperature, volume, and chemical content. These conditions are known as variables. For example, body temperature is a variable that can increase in a hot environment or decrease in a cold environment.

There are two types of feedback mechanisms in the human body: negative and positive.

  • Negative Feedback: Most systems of the body are regulated by negative feedback mechanisms, which maintain homeostasis. Negative means that any deviation from the set point is made smaller or is resisted. The maintenance of normal blood pressure is a negative-feedback mechanism. Normal blood pressure is important because it is responsible for moving blood from the heart to tissues.
  • Positive Feedback: Positive-feedback mechanisms are not homeostatic and are rare in healthy individuals. Positive means that when a deviation from a normal value occurs, the response of the system is to make the deviation even greater. Positive feedback therefore usually creates a cycle leading away from homeostasis and, in some cases, results in death. Inadequate delivery of blood to cardiac muscle is an example of positive feedback.

Question 4:

In the following single-replacement reaction, ______ replaces ______.

Cl2+2NaI→2NaCl+I2

A. sodium, iodine

B. chlorine, iodine

C. chlorine, sodium

D. sodium, chlorine

The Correct Answer is B.

In this reaction, chlorine (Cl2) is an element in the reaction that replaces iodine in the compound sodium iodide (NaI). This allows chlorine to form a compound with sodium (NaCl) and leaves iodine (I2) as an element. 

Synthesis reactions involve two or more reactants (A and B) combining to form one product (AB). In the example provided, hydrogen (H2) and oxygen (O2) begin as separate elements. At the end of the reaction, the hydrogen and oxygen atoms are bonded in a molecule of water (H2O).

Decomposition reactions have only one reactant (AB) that breaks apart into two or more products (A and B). In the example above, hydrogen peroxide (H2O2) breaks apart into two smaller molecules: water (H2O) and oxygen (O2).

Single-replacement reactions involve two reactants, one compound (AB) and one element (C). In this type of reaction, one element replaces another to form a new compound (AC), leaving one element by itself (B). In the example, zinc replaces hydrogen in hydrochloric acid (HCl). As a result, zinc forms a compound with chlorine, zinc chloride (ZnCl2), and hydrogen (H2) is left by itself.

Double-replacement reactions involve two reactants, both of which are compounds made of two components (AB and CD). In the example, silver nitrate, composed of silver (Ag1+) and nitrate (NO31-) ions, reacts with sodium chloride, composed of sodium (Na1+) and chloride (Cl1-) ions. The nitrate and chloride ions switch places to produce two compounds that are different from those in the reactants.

Combustion reactions occur when fuels burn, and they involve specific reactants and products, as seen in the examples below. Some form of fuel that contains carbon and hydrogen is required. Examples of such fuels are methane, propane in a gas grill, butane in a lighter, and octane in gasoline. Notice that these fuels all react with oxygen, which is necessary for anything to burn. In all combustion reactions, carbon dioxide, water, and energy are produced. When something burns, energy is released, which can be felt as heat and seen as light.


Question 5:

What solution has a pH of 7?

A. Aniline

B. Pyridine

C. Pure water

D. Sodium hydroxide

The Correct Answer is C.

A pH of 7 is a neutral solution, which is how pure water is classified. Researchers can determine the strength of an acid or a base by measuring the pH of a solution. The pH value describes how acidic or basic a solution is. On pH scale, shown below, if the number is less than 7 the solution is acidic. A pH greater than 7 means the solution is basic. When the pH is exactly 7, the solution is neutral.


Question 6:

Which of the following determines the strength of an acidic solution?

A. Litmus paper that turns red

B. Litmus paper that turns blue

C. Measured pH value equal to 7

D. Measured pH value less than 7

The Correct Answer is D.

Both litmus paper and a pH scale can be used to indicate whether a solution is acidic. However, a pH scale can also determine the strength of an acid.

Researchers can determine the strength of an acid or a base by measuring the pH of a solution. The pH value describes how acidic or basic a solution is. On pH scale, shown below, if the number is less than 7 the solution is acidic. A pH greater than 7 means the solution is basic. When the pH is exactly 7, the solution is neutral.


Question 7:

Which of the following types of tissues include cells of the immune system and of the blood?

A. Connective

B. Epithelial

C. Muscle

D. Neural

The Correct Answer is A.

tissue is a group of cells with similar structure and function and similar extracellular substances located between the cells. The table below describes the four primary tissues found in the human body.

body.


Question 8:

Which statement best represents Mendel’s experiments with garden peas?

A. As a result, Mendel developed several theories that have since been disproved.

B. Mendel realized he was on an incorrect track, which led him to other experimental media

C. As a result, Mendel developed foundational conclusions that are still valued and followed today.

D. Mendel collaborated with others interested in genetics to develop heredity guidelines we still use today

The Correct Answer is D.

Mendel developed theories of genetics that scientists around the world use today.

From experiments with garden peas, Mendel developed a simple set of rules that accurately predicted patterns of heredity. He discovered that plants either self-pollinate or cross-pollinate, when the pollen from one plant fertilizes the pistil of another plant. He also discovered that traits are either dominant or recessive. Dominant traits are expressed, and recessive traits are hidden.

Mendel’s Theory of Heredity

To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

  • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
  • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
  • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
  • An individual receives one allele from each parent.
  • The presence of an allele does not guarantee that the trait will be expressed.

Question 9:

What standard is used to make comparisons in experiments?

A. Sample size

B. Control group

C. Dependent variable

D. Independent variable

The Correct Answer is B.

A control group is a factor that does not change during an experiment. Due to this, it is used as a standard for comparison with variables that do change such as a dependent variable.

Recall that these make up the scientific method, described below:

  • Problem: The question created because of an observation. Example: Does the size of a plastic object affect how fast it naturally degrades in a lake?
  • Research: Reliable information available about what is observed. Example: Learn how plastics are made and understand the properties of a lake.
  • Hypothesis: A predicted solution to the question or problem. Example: If the plastic material is small, then it will degrade faster than a large particle.
  • Experiment: A series of tests used to evaluate the hypothesis. Experiments consist of an independent variable that the researcher modifies and a dependent variable that changes due to the independent variable. They also include a control group used as a standard to make comparisons. 
    • Example: Collect plastic particles both onshore and offshore of the lake over time. Determine the size of the particles and describe the lake conditions during this time period.
  • Observe: Analyze data collected during an experiment to observe patterns. 
    • Example: Analyze the differences between the numbers of particles collected in terms of size.
  • Conclusion: State whether the hypothesis is rejected or accepted and summarize all results.
  • Communicate: Report findings so others can replicate and verify the results.

Question 10:

The physical appearance or _____ of an organism is determined by a set of alleles.

A. genotype

B. phenotype

C. transcription

D. translation

The Correct Answer is B.

The phenotype is the physical appearance of an organism, and the genotype is the set of alleles.

Mendel’s Theory of Heredity

To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

  • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
  • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
  • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
  • An individual receives one allele from each parent.
  • The presence of an allele does not guarantee that the trait will be expressed