:pH is a measure of how acidic or basic a substance is. The pH scale ranges from:

A. 0–7

B. 7–14

C. 0–14

D. 1–10

For those aiming to excel in their ATI TEAS test and secure admission into their desired nursing program, ExamGates offers an invaluable resource. Our platform features practice questions meticulously crafted by tutors who have previously aced the exam themselves. With ExamGates, you can access content that is 100% relevant to the test, accompanied by vivid images and illustrations. Additionally, our platform provides comprehensive explanations for both correct and incorrect answers, empowering you to fully grasp the material and optimize your study efforts. Take the first step towards your nursing aspirations with ExamGates today.

Answer Explanation:

A. 0–7: This range corresponds to acidic solutions on the pH scale. A pH value below 7 indicates acidity.

B. 7–14: This range corresponds to basic solutions on the pH scale. A pH value above 7 indicates alkalinity.

C. 0–14 (Correct Answer): The pH scale ranges from 0 to 14, covering the entire spectrum of acidity and alkalinity. A pH value of 7 is considered neutral, while values below 7 indicate acidity and values above 7 indicate alkalinity.

D. 1–10: This range does not encompass the full range of the pH scale. The pH scale extends beyond 10 for alkaline solutions and below 1 for highly acidic solutions. Therefore, this choice is incorrect.

Therefore, the Correct Answer is C.

More Questions on C2 Acids, Bases and Salts

Question 1:

Which one of the following must be added to dilute hydrochloric acid to produce hydrogen?

A. Iron

B. Iron sulfide

C. Copper chloride

D. Sulfur

The Correct Answer is A.

A. Iron (Correct Answer): Iron can react with hydrochloric acid to produce hydrogen gas according to the following reaction:

2HCl + Fe => FeCl2 + H2

So, adding iron to dilute hydrochloric acid would produce hydrogen gas.

B. Iron sulfide: Iron sulfide may react with hydrochloric acid, but it does not directly produce hydrogen gas. The reaction would likely produce hydrogen sulfide gas instead.

C. Copper chloride: Copper chloride does not react with hydrochloric acid to produce hydrogen gas. The reaction between copper chloride and hydrochloric acid would likely produce copper chloride and hydrogen chloride gas.

D. Sulfur: Sulfur does not react with hydrochloric acid to produce hydrogen gas. The reaction between sulfur and hydrochloric acid would likely produce hydrogen sulfide gas.


Question 2:

What is produced when an acid reacts with a metal hydroxide?

A. Salt and water

B. Carbon dioxide and water

C. Oxygen gas and water

D. Hydrogen gas and water

The Correct Answer is A.

A) Salt and water (Correct Answer): When an acid reacts with a metal hydroxide, a salt and water are typically produced. The metal in the metal hydroxide combines with the acid to form a salt, and water is produced as a byproduct of the reaction.

B) Carbon dioxide and water: This reaction occurs when an acid reacts with a metal carbonate, not a metal hydroxide. When carbonates react with acids, carbon dioxide gas is produced along with water and a salt.

C) Oxygen gas and water: This reaction is not typical when an acid reacts with a metal hydroxide. Metal hydroxides generally do not produce oxygen gas when reacting with acids.

D) Hydrogen gas and water: This reaction occurs when an acid reacts with a metal, not a metal hydroxide. When metals react with acids, hydrogen gas is typically produced along with water and a salt.


Question 3:

A universal indicator has the ability to indicate the full range of pH values on the pH scale by color changes. Acids change the color of universal indicator towards:

A. Yellow, green, and blue colors.

B. Green, blue, and purple colors.

C. White, grey, and black colors.

D. Yellow, orange, and red colors

The Correct Answer is D.

A. Yellow, green, and blue colors: This sequence of colors does not represent the typical color changes observed in universal indicator when exposed to acidic solutions. Universal indicator typically changes from green/blue in neutral solutions to yellow/orange/red in acidic solutions.

B. Green, blue, and purple colors: Purple is not typically observed in the color changes of universal indicator in acidic solutions. Universal indicator usually transitions from green/blue in neutral solutions to yellow/orange/red in acidic solutions.

C. White, grey, and black colors: These colors are not typically observed in the color changes of universal indicator. Universal indicator undergoes a series of color changes from green/blue to yellow/orange/red in acidic solutions.

D. Yellow, orange, and red colors. (Correct Answer): Universal indicator typically changes from green/blue in neutral solutions to yellow/orange/red in acidic solutions. This sequence of colors represents the typical color changes observed in universal indicator when exposed to acidic solutions.


Question 4:

Suggest a pH value for ammonia solution.

A. 7-8

B. 9-10

C. 10-13

D. 13-14

The Correct Answer is C.

A) 7-8: This pH range suggests a neutral to slightly basic solution. Ammonia solution is typically more alkaline than this range.

B) 9-10: This pH range suggests a slightly basic solution. Ammonia solution is generally more alkaline than this range.

C) 10-13 (Correct Answer): Ammonia solution is typically alkaline and falls within the pH range of 10-13. Ammonia reacts with water to produce hydroxide ions (OH-), resulting in an alkaline solution.

D) 13-14: This pH range suggests a highly basic solution, which may be too high for typical ammonia solutions. Ammonia solutions are usually within the pH range of 10-13.


Question 5:

Which type of solution is one with a pH of 8?:

A. Acidic

B. Basic

C. Neutral

D. Pure

The Correct Answer is B.

a. Acidic: Solutions with pH values below 7 are considered acidic. A pH of 8 indicates a solution that is more basic than acidic.

b. Basic (Correct Answer): Solutions with pH values above 7 are considered basic or alkaline. A pH of 8 indicates a basic solution.

c. Neutral: Solutions with a pH of 7 are considered neutral. A pH of 8 indicates a solution that is slightly basic, not neutral.


Question 6:

What is a precipitate?

A. A gas formed during a chemical reaction

B. A liquid formed when two aqueous solutions react

C. A solid formed when two aqueous solutions react

D. A solution formed during a chemical reaction

The Correct Answer is C.

A) A gas formed during a chemical reaction: While gases can indeed be produced during chemical reactions, a precipitate specifically refers to a solid that forms during a reaction.

B) A liquid formed when two aqueous solutions react: Precipitates are not liquids. They are solids that are formed when certain ions combine to form an insoluble compound.

C) A solid formed when two aqueous solutions react (Correct Answer): A precipitate is indeed a solid substance that forms when two aqueous solutions react and certain ions combine to create an insoluble compound.

D) A solution formed during a chemical reaction: A precipitate is not a solution. It is the solid product that separates out of a solution during a chemical reaction due to its limited solubility.


Question 7:

What ions make ammonia solution alkaline?

A. Cl- ions

B. H+ ions

C. Na+ ions

D. OH- ions

The Correct Answer is D.

A) Cl- ions: Chloride ions (Cl-) are typically found in salts and do not contribute directly to the alkalinity of ammonia solution.

B) H+ ions: Hydrogen ions (H+) typically characterize acidic solutions, not alkaline solutions. Ammonia solution doesn't contain H+ ions.

C) Na+ ions: Sodium ions (Na+) are typically found in salts and do not contribute directly to the alkalinity of ammonia solution.

D) OH- ions (Correct Answer): Ammonia solution becomes alkaline due to the presence of hydroxide ions (OH-). Ammonia (NH3) reacts with water to form ammonium ions (NH4+) and hydroxide ions (OH-), increasing the concentration of OH- ions and making the solution alkaline.


Question 8:

What is the formula of ammonium sulfate?

A. NH4SO4

B. (NH4)2SO4

C. (NH4)SO4

D. (NH3)2SO4

The Correct Answer is B.

A) NH4SO4: This formula suggests a compound where one ammonium ion is combined with one sulfate ion, which is not the correct composition of ammonium sulfate.

B) (NH4)2SO4 (Correct Answer): This formula correctly represents ammonium sulfate, indicating that it consists of two ammonium ions (NH4+) and one sulfate ion (SO4^2-).

C) (NH4)SO4: This formula suggests a compound with one ammonium ion combined with one sulfate ion, which is not the correct composition of ammonium sulfate.

D) (NH3)2SO4: This formula suggests a compound where two ammonia molecules (NH3) are combined with one sulfate ion, which is incorrect. Ammonium sulfate contains ammonium ions (NH4+), not ammonia molecules (NH3).


Question 9:

What is an appropriate pH value for hydrochloric acid?

A. pH 2-4

B. pH 1-3

C. pH 0-2

D. pH 3-5

The Correct Answer is B.

Rationale for each choice:

A) pH 2-4: While hydrochloric acid is indeed highly acidic, a pH range of 2-4 would suggest a slightly less concentrated solution. However, this range might still be appropriate for dilute or partially neutralized hydrochloric acid.

A) pH 1-3 (Correct Answer): Hydrochloric acid typically has a very low pH due to its strong acidic nature. A pH range of 1-3 is commonly observed for concentrated hydrochloric acid solutions.

C) pH 0-2: This range suggests an even stronger acidity, which could be true for very concentrated hydrochloric acid solutions, although they might not commonly occur in typical laboratory or industrial settings.

D) pH 3-5: This pH range would indicate a significantly less acidic solution compared to hydrochloric acid. Such a pH range might be more appropriate for weak acids or diluted hydrochloric acid solutions rather than the concentrated form.


Question 10:

When acids and bases react together, we call this a:

A. Neutralization reaction.

B. Decomposition reaction.

C. Synthesis reaction.

D. Redox reaction.

The Correct Answer is A.

A. Neutralization reaction. (Correct Answer): When acids and bases react, they undergo a neutralization reaction, resulting in the formation of water and a salt. In this reaction, the acidic properties of the acid are neutralized by the basic properties of the base.

B. Decomposition reaction: A decomposition reaction involves the breakdown of a compound into smaller substances. It does not typically describe the reaction between acids and bases.

C. Synthesis reaction: A synthesis reaction involves the formation of a compound from simpler substances. It does not typically describe the reaction between acids and bases.

D. Redox reaction: A redox reaction involves the transfer of electrons between reactants. While redox reactions can occur in certain acid-base reactions, they are not specific to the reaction between acids and bases. The typical reaction between acids and bases involves proton transfer rather than electron transfer. Therefore, "neutralization reaction" is a more specific and accurate term for this type of reaction.