What is the difference between a monosaccharide and a disaccharide?

A. Monosaccharides are composed of two sugar molecules while disaccharides are composed of a single sugar molecule.

B. Monosaccharides are simple sugars that cannot be further broken down into simpler sugars while disaccharides are composed of two simple sugars.

C. Monosaccharides are only found in plants while disaccharides are only found in animals.

D. Monosaccharides are used for energy storage while disaccharides are used for structural purposes.

For those aiming to excel in their ATI TEAS test and secure admission into their desired nursing program, ExamGates offers an invaluable resource. Our platform features practice questions meticulously crafted by tutors who have previously aced the exam themselves. With ExamGates, you can access content that is 100% relevant to the test, accompanied by vivid images and illustrations. Additionally, our platform provides comprehensive explanations for both correct and incorrect answers, empowering you to fully grasp the material and optimize your study efforts. Take the first step towards your nursing aspirations with ExamGates today.

Answer Explanation:

Carbohydrates are one of the main types of biomolecules and are composed of monomers called monosaccharides. Monosaccharides are simple sugars that cannot be further broken down into simpler sugars. They are usually composed of 3 to 7 carbon atoms and have a general formula of (CH2O)n, where n is a number between 3 and 7. Examples of monosaccharides include glucose, fructose, and galactose.

When two monosaccharides are joined together by a glycosidic bond, they form a disaccharide. Disaccharides are composed of two simple sugars and can be broken down into their constituent monosaccharides by hydrolysis. Examples of disaccharides include sucrose, lactose, and maltose.

Option a) is incorrect because it describes the composition of a disaccharide, not a monosaccharide. Option

c) is incorrect because both monosaccharides and disaccharides can be found in both plants and animals.

Option d) is incorrect because both monosaccharides and disaccharides can be used for energy storage and

structural purposes, depending on their specific structure and function in the organism.

 
  Polysaccharide Vs. Disaccharide Vs. Monosaccharide: (Notes & PDF) - Viva  Differences

 

 

 

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science Practice Test 3

Question 1:

What is the function of ribosomes in a cell?

A. To produce energy for the cell

B. To store genetic information

C. To transport molecules within the cell

D. To synthesize proteins in the cell

The Correct Answer is D.

Ribosomes are small, spherical structures found in all living cells, including bacteria, archaea, and eukaryotes. Their primary function is to synthesize proteins using the genetic information stored in the cell's DNA. Ribosomes are composed of two subunits, one large and one small, that come together during protein synthesis.

Ribosomes read the genetic information stored in mRNA (messenger RNA) and use this information to assemble amino acids in the correct order to form a protein. The ribosome moves along the mRNA, adding one amino acid at a time to the growing protein chain until it reaches the end of the mRNA and the protein is complete.

Proteins are essential for a wide variety of cellular functions, including catalyzing chemical reactions, providing structural support, and transporting molecules across cell membranes. Therefore, ribosomes play a critical role in the overall function and survival of a cell.

Ribosome - Definition, Function and Structure | Biology Dictionary

 


Question 2:

What is the difference between innate immunity and adaptive immunity?

A. Innate immunity is present at birth and provides immediate, non-specific protection against pathogens while adaptive immunity is developed over time and provides specific protection against particular pathogens.

B. Innate immunity involves the recognition of specific pathogens while adaptive immunity involves the recognition of general paterns of pathogens.

C. Innate immunity involves the production of antibodies while adaptive immunity involves the activation of phagocytes.

D. Innate immunity is activated by the lymphatic system while adaptive immunity is activated by the circulatory system.

The Correct Answer is A.

Innate immunity is the first line of defense against pathogens and is present at birth. It provides immediate, non-specific protection against a wide range of pathogens, including bacteria, viruses, and fungi. Innate immunity involves physical barriers, such as skin and mucous membranes, as well as cellular and molecular components, such as phagocytes and cytokines.

Adaptive immunity, on the other hand, is developed over time and provides specific protection against particular pathogens. It involves the recognition of antigens, which are specific components of pathogens, by immune cells called lymphocytes. The lymphocytes then produce antibodies that are specific to the antigens, allowing for a targeted response to the pathogen. This process takes time to develop, as the immune system needs to encounter the pathogen and mount a response.

Overall, innate immunity provides immediate, non-specific protection while adaptive immunity provides specific protection that is tailored to the particular pathogen. Both forms of immunity work together to protect the body against pathogens.


Question 3:

What is the largest organ in the human body by surface area?

A. Brain

B. Heart

C. Liver

D. Skin

The Correct Answer is D.

The largest organ in the human body by surface area is the skin. It covers the entire external surface of the body and has an average surface area of about 20 square feet in adults.

 
 

 

 


Question 4:

What is the name of the valve that separates the left atrium and left ventricle in the heart?

A. Aortic valve

B. Mitral valve

C. Tricuspid valve

D. Pulmonary valve

The Correct Answer is B.

The mitral valve is located between the left atrium and left ventricle of the heart and helps to regulate the flow of blood between these chambers. It consists of two leaflets or flaps that open and close in response to changes in pressure as the heart beats.

During diastole, when the heart is relaxed and filling with blood, the mitral valve opens to allow blood to flow from the left atrium into the left ventricle. During systole, when the heart contracts to pump blood out of the left ventricle and into the systemic circulation, the mitral valve closes to prevent backflow of blood into the left atrium.

The mitral valve is one of four valves in the heart that help to ensure the unidirectional flow of blood through the heart and the rest of the circulatory system. Problems with the mitral valve, such as mitral valve prolapse or mitral stenosis, can lead to a range of symptoms and complications, including shortness of breath, fatigue, chest pain, and heart failure.

 
  Name the valve between the left atrium and the left ventricle and give its  significance.

 

 


Question 5:

Which of the following types of RNA carries amino acids to the ribosome during protein synthesis?

A. Messenger RNA

B. Ribosomal RNA

C. Transfer RNA

D. Small nuclear RNA

The Correct Answer is C.

Transfer RNA (tRNA) is a type of RNA molecule that carries amino acids to the ribosome during protein synthesis. Each tRNA molecule has a specific sequence of three nucleotides called an anticodon, which pairs with a complementary codon in the messenger RNA (mRNA) sequence. Each tRNA also carries a specific amino acid that corresponds to the codon it recognizes, allowing the ribosome to link the amino acids together in the correct order to form a protein.

In contrast, messenger RNA (mRNA) carries the genetic information from the DNA to the ribosome, where it serves as a template for protein synthesis. Ribosomal RNA (rRNA) is a component of the ribosome itself, where it helps to catalyze the formation of peptide bonds between amino acids. Small nuclear RNA (snRNA) is involved in splicing of pre-mRNA molecules during post-transcriptional processing.

 
  Diagram  Description automatically generated

 

 


Question 6:

During embryonic development, which of the following germ layers forms the nervous system?

A. Ectoderm

B. Endoderm

C. Mesoderm

D. Exoderm

The Correct Answer is A.

The three germ layers that form during embryonic development are the ectoderm, mesoderm, and endoderm. The ectoderm is the outermost layer, and it gives rise to the skin, hair, nails, and nervous system. The nervous system develops from a specialized region of the ectoderm called the neural plate, which invaginates to form the neural tube. The neural tube ultimately gives rise to the brain and spinal cord, which make up the central nervous system, as well as the peripheral nervous system. The endoderm gives rise to the lining of the digestive and respiratory tracts, while the mesoderm gives rise to the musculoskeletal system, circulatory system, and several other organs. The exoderm is not a germ layer and does not exist during embryonic development.

Ectoderm - Definition, Formation, Function and Quiz | Biology Dictionary

 


Question 7:

Which of the following units is used to indicate length?

A. kg

B. L

C. s

D. m

The Correct Answer is D.

The unit used to indicate length is the meter (m). It is the base unit of length in the International System of Units (SI).


Question 8:

A researcher collects data on the number of cars passing through a busy intersection at different times of the day for a month. This data would be most useful to analyze which of the following:

A. traffic paterns during rush hour

B. pedestrian movement during the day

C. air pollution levels in the area

D. noise levels in the area

The Correct Answer is A.

The data collected by the researcher on the number of cars passing through a busy intersection at different times of the day for a month would be most useful to analyze traffic paterns during rush hour.


Question 9:

What is the primary pigment responsible for photosynthesis in plants?

A. Chlorophyll a

B. Chlorophyll b

C. Carotenoids

D. Anthocyanins

The Correct Answer is A.

Chlorophyll a is the primary pigment responsible for photosynthesis in plants. It is a green pigment that is essential for capturing light energy from the sun and converting it into chemical energy that can be used by the plant. Chlorophyll a absorbs light most efficiently in the blue and red parts of the spectrum, and reflects green light, giving plants their characteristic green color

Chlorophyll b is another type of chlorophyll that is also involved in photosynthesis, but it is not as abundant as chlorophyll a. Chlorophyll b absorbs light most efficiently in the blue and orange parts of the spectrum and reflects yellow-green light.

Carotenoids are pigments that are present in many plants and are involved in photosynthesis as well as protecting the plant from damage caused by excess light. Carotenoids are responsible for the orange, yellow, and red colors of many fruits and vegetables.

Anthocyanins are pigments that give plants their red, purple, and blue colors. While they are not directly involved in photosynthesis, they play a role in atracting pollinators and protecting the plant from damage caused by UV radiation.

What are the pigments involved in photosynthesis? - Quora

 


Question 10:

What is the difference between a monosaccharide and a disaccharide?

A. Monosaccharides are composed of two sugar molecules while disaccharides are composed of a single sugar molecule.

B. Monosaccharides are simple sugars that cannot be further broken down into simpler sugars while disaccharides are composed of two simple sugars.

C. Monosaccharides are only found in plants while disaccharides are only found in animals.

D. Monosaccharides are used for energy storage while disaccharides are used for structural purposes.

The Correct Answer is B.

Carbohydrates are one of the main types of biomolecules and are composed of monomers called monosaccharides. Monosaccharides are simple sugars that cannot be further broken down into simpler sugars. They are usually composed of 3 to 7 carbon atoms and have a general formula of (CH2O)n, where n is a number between 3 and 7. Examples of monosaccharides include glucose, fructose, and galactose.

When two monosaccharides are joined together by a glycosidic bond, they form a disaccharide. Disaccharides are composed of two simple sugars and can be broken down into their constituent monosaccharides by hydrolysis. Examples of disaccharides include sucrose, lactose, and maltose.

Option a) is incorrect because it describes the composition of a disaccharide, not a monosaccharide. Option

c) is incorrect because both monosaccharides and disaccharides can be found in both plants and animals.

Option d) is incorrect because both monosaccharides and disaccharides can be used for energy storage and

structural purposes, depending on their specific structure and function in the organism.

 
  Polysaccharide Vs. Disaccharide Vs. Monosaccharide: (Notes & PDF) - Viva  Differences