What solution has a pH of 7?

A. Aniline

B. Pyridine

C. Pure water

D. Sodium hydroxide

For those aiming to excel in their ATI TEAS test and secure admission into their desired nursing program, ExamGates offers an invaluable resource. Our platform features practice questions meticulously crafted by tutors who have previously aced the exam themselves. With ExamGates, you can access content that is 100% relevant to the test, accompanied by vivid images and illustrations. Additionally, our platform provides comprehensive explanations for both correct and incorrect answers, empowering you to fully grasp the material and optimize your study efforts. Take the first step towards your nursing aspirations with ExamGates today.

Answer Explanation:

A pH of 7 is a neutral solution, which is how pure water is classified. Researchers can determine the strength of an acid or a base by measuring the pH of a solution. The pH value describes how acidic or basic a solution is. On pH scale, shown below, if the number is less than 7 the solution is acidic. A pH greater than 7 means the solution is basic. When the pH is exactly 7, the solution is neutral.

Therefore, the Correct Answer is C.

More Questions on TEAS 7 Science Practice Test 2

Question 1: A person is diagnosed as having acidosis, a condition in which the blood pH is below 7.45. What does the doctor most likely conclude?

A. Too much carbon dioxide is found in the blood.

B. Highly oxygenated blood circulates through the body

C. A blockage prevents blood from leaving the pulmonary artery

D. The nasal cavity has a difficult time clearing particles from the air.

The Correct Answer is A. Acidosis is when the body fluids contain too much acid, or low pH. The kidneys and lungs are unable to keep the body’s pH in balance. Acidosis is the result when there is too much loss of bicarbonate from the blood known as metabolic acidosis, or due to a buildup of carbon dioxide in the blood due to poor lung function, known as respiratory acidosis. It is the opposite of alkalosis, which is a condition in which there is too much base in the body fluids.

Question 2:

Which of the following atoms is a cation?

A. 14 protons, 14 neutrons, 18 electrons

B. 34 protons, 45 neutrons, 36 electrons

C. 35 protons, 44 neutrons, 35 electrons

D. 82 protons, 125 neutrons, 78 electrons

The Correct Answer is D.

Because it has more protons than electrons, this atom has a positive charge and can be classified as a cation. When a metal such as sodium reacts to become stable, it loses its valence electrons. At first, it is a neutral atom with 11 protons and 11 electrons. When it loses an electron, the number of protons does not change, and the atom has 11 protons and 10 electrons. Because there is one more positively charged proton, a cation forms. A cation is an ion with a net positive charge.


Question 3:

A researcher notices a positive correlation between the height of a plant and nutrient concentration over time. Based on this observation, what conclusion does he reach?

A. The height of a plant increases in the absence and presence of the nutrients

B. When the amount of nutrients available to the plant decreases, its height increases.

C. The amount of nutrients available to a plant is independent of how tall the plant gets

D. When the amount of nutrients available to the plant increases, its height also increases.

The Correct Answer is D.

Because this is a positive correlation, if the nutrient concentration increases or decreases, plant height will either increase or decrease accordingly.

While analyzing data, scientists tend to observe cause-and-effect relationships. These relationships can be quantified using correlations. Correlations measure the amount of linear association between two variables. There are three types of correlations:

Positive correlation: 
As one variable increases, the other variable also increases. This is also known as a direct correlation.

Negative correlation: 
As one variable increases, the other decreases. The opposite is true if one variable decreases. A negative correlation is also known as an inverse correlation or an indirect correlation.

No correlation: 
There is no connection or relationship between two variables.


Question 4:

Which of the following types of tissues include cells of the immune system and of the blood?

A. Connective

B. Epithelial

C. Muscle

D. Neural

The Correct Answer is A.

tissue is a group of cells with similar structure and function and similar extracellular substances located between the cells. The table below describes the four primary tissues found in the human body.

body.


Question 5:

A student notices a pattern of stripes on five tigers. Each of the five tigers has the same stripe pattern. Using his inductive reasoning, what does he logically assume based on this information?

A. The pattern continues to change over time.

B. Natural adaptations cause this pattern to occur

C. Each offspring will have the same stripe pattern

D. Ancestors of the tigers have different stripe patterns

The Correct Answer is C.

Inductive reasoning involves making specific observations and using them to make broad statements. The student observes that all of the tigers have the same stripe pattern. He can use this observation to make the broad statement that all the tigers’ offspring will have the same stripe pattern.

Inductive reasoning involves drawing a general conclusion from specific observations. This form of reasoning is referred to as the “from the bottom up” approach. Information gathered from specific observations can be used to make a general conclusion about the topic under investigation. In other words, conclusions are based on observed patterns in data.


Question 6:

An intracellular chemical signal can be produced in the cell membrane. Once it is produced, where does it go?

A. To a different cell

B. To another part of the same cell

C. To a region right outside the cell

D. To an area with a high ion concentration

The Correct Answer is B.

There are two major types of receptor molecules that respond to an intercellular chemical signal:

  • Intracellular receptors: These receptors are located in either the cytoplasm or the nucleus of the cell. Signals diffuse across the cell membrane and bind to the receptor sites on intracellular receptors, of the same cell.
  • Membrane-bound receptors: These receptors extend across the cell membrane, with their receptor sites on the outer surface of the cell membrane. They respond to intercellular chemical signals that are large, water-soluble molecules that do not diffuse across the cell membrane.

Question 7:

What is the correct order of the stages of the cell cycle?

A. G1,S,G2,M

B. G2,S,G1,M

C. M,S,G2,G1

D. S,M,G1,G1

The Correct Answer is A.

The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase.

  • G1: The first gap phase, during which the cell prepares to copy its DNA
  • S: The synthesis phase, during which DNA is copied
  • G2 : The second gap phase, during which the cell prepares for cell division

It may appear that little is happening in the cell during the gap phases. Most of the activity occurs at the level of enzymes and macromolecules. The cell produces things like nucleotides for synthesizing new DNA strands, enzymes for copying the DNA, and tubulin proteins for building the mitotic spindle. During the S phase, the DNA in the cell doubles, but few other signs are obvious under the microscope. All the dramatic events that can be seen under a microscope occur during the M phase: the chromosomes move, and the cell splits into two new cells with identical nuclei.


Question 8:

_____ is dependent not only on the temperature, but also on the amount of substance available.

A. Condensation

B. Deposition

C. Evaporation

D. Melting

The Correct Answer is C.

Unlike condensation, deposition, and melting, evaporation is dependent not only on the temperature, but also on the amount of a substance available.

Condensation is the change of a gas or vapor to a liquid. A change in the pressure and the temperature of a substance causes this change. The condensation point is the same as the boiling point of a substance. It is most noticeable when there is a large temperature difference between an object and the atmosphere. Condensation is also the opposite of evaporation.

Evaporation is the change of a liquid to a gas on the surface of a substance. This is not to be confused with boiling, which is a phase transition of an entire substance from a liquid to a gas. The evaporation point is the same as the freezing point of a substance. As the temperature increases, the rate of evaporation also increases. Evaporation depends not only on the temperature, but also on the amount of substance available.

Freezing is the change of a liquid to a solid. It occurs when the temperature drops below the freezing point. The amount of heat that has been removed from the substance allows the particles of the substance to draw closer together, and the material changes from a liquid to a solid. It is the opposite of melting.

Melting is the change of a solid into a liquid. For melting to occur, enough heat must be added to the substance. When this is done, the molecules move around more, and the particles are unable to hold together as tightly as they can in a solid. They break apart, and the solid becomes a liquid.

Sublimation is a solid changing into a gas. As a material sublimates, it does not pass through the liquid state. An example of sublimation is carbon dioxide, a gas, changing into dry ice, a solid. It is the reverse of deposition.

Deposition is a gas changing into a solid without going through the liquid phase. It is an uncommon phase change. An example is when it is extremely cold outside and the cold air comes in contact with a window. Ice will form on the window without going through the liquid state.


Question 9:

Blood oxygen levels are most likely low when blood _____.

A. leaves the aorta

B. fills the right atrium

C. reaches body tissues

D. flows through arteries

The Correct Answer is B.

Blood continually flows in one direction, beginning in the heart and proceeding to the arteries, arterioles, and capillaries. When blood reaches the capillaries, exchanges occur between blood and tissues. After this exchange happens, blood is collected into venules, which feed into veins and eventually flow back to the heart’s atrium. The heart must relax between two heartbeats for blood circulation to begin.

Two types of circulatory processes occur in the body:

Systemic circulation

  • The pulmonary vein pushes oxygenated blood into the left atrium.
  • As the atrium relaxes, oxygenated blood drains into the left ventricle through the mitral valve. 3. The left ventricle pumps oxygenated blood to the aorta.
  • Blood travels through the arteries and arterioles before reaching the capillaries that surround the tissues.

Pulmonary circulation

  • Two major veins, the Superior Vena Cava and the Inferior Vena Cava, brings deoxygenated blood from the upper and lower half of the body.
  • Deoxygenated blood is pooled into the right atrium and then sent into the right ventricle through the tricuspid valve, which prevents blood from flowing backward.
  • The right ventricle contracts, causing the blood to be pushed through the pulmonary valve into the pulmonary artery.
  • Deoxygenated blood becomes oxygenated in the lungs.
  • Oxygenated blood returns from the lungs to the left atrium through the pulmonary veins.


Question 10:

Why did it take many years for the cell theory to be developed?

A. Advancements in microscopy took place slowly.

B. Cells were difficult to isolate for experimental analysis

C. Researchers believed a cell formed from preexisting cells

D. Scientists already proved that cells were essential for life.

The Correct Answer is A.

Robert Hooke discovered the first cells in the mid-eighteenth century. The cell theory is a theory because it is supported by a significant number of experimental findings. The cell theory took many years to be developed because microscopes were not powerful enough to make such observations.

This theory, or in-depth explanation, about cells consists of three parts:

  • All living things are composed of one or more cells.
  • Cells are alive and represent the basic unit of life.
  • All cells are produced from pre-existing cells.