Which statement regarding metal and non-metal oxides is not true?

A. Metal oxides are bases and forms alkalis in water.

B. Non-metal oxides form acids in water.

C. Solutions of non-metal oxides change red litmus blue.

D. Metal oxides color universal indicator blue and non-metal oxides color it red.

For those aiming to excel in their ATI TEAS test and secure admission into their desired nursing program, ExamGates offers an invaluable resource. Our platform features practice questions meticulously crafted by tutors who have previously aced the exam themselves. With ExamGates, you can access content that is 100% relevant to the test, accompanied by vivid images and illustrations. Additionally, our platform provides comprehensive explanations for both correct and incorrect answers, empowering you to fully grasp the material and optimize your study efforts. Take the first step towards your nursing aspirations with ExamGates today.

Answer Explanation:

A. Metal oxides are bases and form alkalis in water: This statement is generally true. Metal oxides typically react with water to form basic solutions (alkalis). Therefore, this statement is true.

B. Non-metal oxides form acids in water: This statement is generally true. Non-metal oxides typically react with water to form acidic solutions. Therefore, this statement is true.

C. Solutions of non-metal oxides change red litmus blue: This statement is not true. Non-metal oxides typically form acidic solutions in water, which would not change red litmus paper to blue. Instead, they would typically turn blue litmus paper red.

D. Metal oxides color universal indicator blue and non-metal oxides color it red: This statement is generally true. Metal oxides tend to produce basic solutions, which turn universal indicator blue. Non-metal oxides tend to produce acidic solutions, which turn universal indicator red. Therefore, this statement is true.

Therefore, the Correct Answer is C.

More Questions on C2 Acids, Bases and Salts

Question 1:

:pH is a measure of how acidic or basic a substance is. The pH scale ranges from:

A. 0–7

B. 7–14

C. 0–14

D. 1–10

The Correct Answer is C.

A. 0–7: This range corresponds to acidic solutions on the pH scale. A pH value below 7 indicates acidity.

B. 7–14: This range corresponds to basic solutions on the pH scale. A pH value above 7 indicates alkalinity.

C. 0–14 (Correct Answer): The pH scale ranges from 0 to 14, covering the entire spectrum of acidity and alkalinity. A pH value of 7 is considered neutral, while values below 7 indicate acidity and values above 7 indicate alkalinity.

D. 1–10: This range does not encompass the full range of the pH scale. The pH scale extends beyond 10 for alkaline solutions and below 1 for highly acidic solutions. Therefore, this choice is incorrect.


Question 2:

How would you remove unreacted copper oxide from solution?

A. Filtration

B. Distillation

C. Evaporation

D. Decantation

The Correct Answer is A.

A) Filtration (Correct Answer): Filtration is a commonly used method to separate solid particles, such as unreacted copper oxide, from a liquid solution. The solution containing the dissolved copper sulfate can pass through the filter paper, while the solid copper oxide particles are retained on the filter.

B) Distillation: Distillation is a process used to separate components of a mixture based on differences in their boiling points. It is not typically used to separate solid particles from a liquid solution.

C) Evaporation: Evaporation involves heating the solution to allow the solvent (water) to vaporize, leaving behind the solute (copper sulfate) as solid crystals. While evaporation can concentrate the solution, it does not effectively remove solid particles like unreacted copper oxide.

D) Decantation: Decantation involves pouring off the liquid portion of a mixture, leaving the solid behind. While it can be used to separate solid and liquid phases, it may not effectively separate fine solid particles like unreacted copper oxide from the solution. Filtration would be a more suitable method for this purpose.


Question 3:

Which type of solution is one with a pH of 8?:

A. Acidic

B. Basic

C. Neutral

D. Pure

The Correct Answer is B.

a. Acidic: Solutions with pH values below 7 are considered acidic. A pH of 8 indicates a solution that is more basic than acidic.

b. Basic (Correct Answer): Solutions with pH values above 7 are considered basic or alkaline. A pH of 8 indicates a basic solution.

c. Neutral: Solutions with a pH of 7 are considered neutral. A pH of 8 indicates a solution that is slightly basic, not neutral.


Question 4:

What do plants use the nitrogen in fertilizers for?

A. To provide energy for photosynthesis

B. To build cellulose in cell walls

C. To build amino acids and proteins

D. To regulate water uptake

The Correct Answer is D.

A) To provide energy for photosynthesis: While nitrogen is essential for various metabolic processes in plants, it is not directly involved in providing energy for photosynthesis. Instead, plants use sunlight to convert carbon dioxide and water into glucose during photosynthesis.

B) To build cellulose in cell walls: Nitrogen is not directly involved in the synthesis of cellulose, which is primarily composed of glucose units. Cellulose synthesis mainly relies on carbon and hydrogen, which are obtained from carbon dioxide and water during photosynthesis.

C) To build amino acids and proteins: Plants use nitrogen from fertilizers to synthesize amino acids and proteins. Nitrogen is a crucial component of amino acids, the building blocks of proteins, which are essential for plant growth, development, and various physiological processes.

D) To regulate water uptake (Correct Answer): Nitrogen plays a role in regulating various physiological processes in plants, including water uptake. It affects the osmotic potential of plant cells and helps regulate the movement of water and nutrients within the plant.


Question 5:

How can copper sulfate crystals be separated from copper sulfate solution?

A. Filtration

B. Distillation

C. Decantation

D. Evaporation

The Correct Answer is D.

A) Filtration: Filtration is not suitable for separating dissolved substances from a solution. It is typically used to separate solid particles from a liquid mixture.

B) Distillation: Distillation is a process used to separate components of a mixture based on differences in their boiling points. It is not typically used to separate solid crystals from a solution.

C) Decantation: Decantation involves pouring off the liquid portion of a mixture, leaving the solid behind. While it can be used to separate solid and liquid phases, it may not effectively separate dissolved copper sulfate from the solution.

D) Evaporation (Correct Answer): Evaporation involves heating the solution to allow the solvent (water) to vaporize, leaving behind the solute (copper sulfate) as solid crystals. This process is commonly used to obtain solid crystals from a solution.


Question 6:

Why is NaCl neutral?

A. Because it contains both hydrogen and hydroxide ions in equal amounts

B. Because it contains hydrogen ions (H+) and hydroxide ions (OH-) in equal amounts

C. Because it does not contain any hydrogen or hydroxide ions

D. Because it dissociates completely in water

The Correct Answer is C.

Rationale for each choice:

A) Because it contains both hydrogen and hydroxide ions in equal amounts: This statement is incorrect. NaCl (sodium chloride) does not contain hydrogen or hydroxide ions. It dissociates into sodium ions (Na+) and chloride ions (Cl-) in water, not hydrogen or hydroxide ions.

B) Because it contains hydrogen ions (H+) and hydroxide ions (OH-) in equal amounts: This statement is incorrect. NaCl does not contain hydrogen or hydroxide ions. In aqueous solution, NaCl dissociates into sodium ions and chloride ions, not hydrogen or hydroxide ions.

C) Because it does not contain any hydrogen or hydroxide ions (Correct Answer): NaCl is a neutral compound composed of sodium ions (Na+) and chloride ions (Cl-). It does not contain any hydrogen or hydroxide ions, so it is neutral in aqueous solution.

D) Because it dissociates completely in water: NaCl does dissociate in water, but its dissociation does not involve the generation of hydrogen or hydroxide ions. It dissociates into sodium ions and chloride ions, which do not contribute to the pH of the solution. Therefore, the completeness of dissociation does not determine its neutrality.


Question 7:

What type of reaction occurs between sulfuric acid and ammonia?

A. Oxidation

B. Reduction

C. Neutralization

D. Precipitation

The Correct Answer is C.

A) Oxidation: Sulfuric acid and ammonia do not participate in an oxidation-reduction reaction, where one substance loses electrons (oxidation) and another gains electrons (reduction).

B) Reduction: Sulfuric acid and ammonia do not participate in an oxidation-reduction reaction, so reduction is not the correct type of reaction.

C) Neutralization (Correct Answer): When sulfuric acid reacts with ammonia, a neutralization reaction occurs. The acidic hydrogen ions (H+) from sulfuric acid react with the basic ammonia molecules (NH3) to form ammonium ions (NH4+) and sulfate ions (SO4^2-), resulting in the formation of an ammonium sulfate salt.

D) Precipitation: A precipitation reaction occurs when two solutions react to form an insoluble solid (precipitate). However, sulfuric acid and ammonia do not form an insoluble product when they react. Therefore, precipitation is not the correct type of reaction for this scenario.


Question 8:

Why is KOH a strong alkali?

A. Because it reacts vigorously with acids

B. Because it forms a basic solution when dissolved in water

C. Because in solution it fully dissociates into K+ and OH-

D. Because it forms insoluble precipitates with metal cations

The Correct Answer is C.

A) Because it reacts vigorously with acids: While KOH does react with acids to form salts and water, the strength of an alkali is not solely determined by its reactivity with acids.

B) Because it forms a basic solution when dissolved in water: This statement is true, but it does not fully explain why KOH is considered a strong alkali. Many compounds can form basic solutions when dissolved in water.

C) Because in solution it fully dissociates into K+ and OH- (Correct Answer): KOH is considered a strong alkali because it fully dissociates in aqueous solution into potassium ions (K+) and hydroxide ions (OH-). This dissociation leads to a high concentration of hydroxide ions in solution, making it strongly alkaline.

D) Because it forms insoluble precipitates with metal cations: This statement describes the formation of insoluble hydroxide precipitates when alkali solutions are added to solutions of metal salts. However, it does not fully explain why KOH itself is considered a strong alkali.


Question 9:

Strong bases are:

A. Strong electrolytes

B. Weak electrolytes

C. Nonelectrolytes

D. Also strong acids

The Correct Answer is A.

a. Strong electrolytes (Correct Answer): Strong bases completely dissociate into ions in solution, making them strong electrolytes. They conduct electricity well due to the presence of a high concentration of ions.

b. Weak electrolytes: Strong bases, unlike weak bases, completely dissociate in solution, resulting in a high concentration of ions. Therefore, they are considered strong electrolytes, not weak electrolytes.

c. Nonelectrolytes: Nonelectrolytes do not ionize in solution and do not conduct electricity. Strong bases, however, ionize completely in solution, making them strong electrolytes.

d. Also strong acids: Strong bases and strong acids are two distinct types of compounds. Strong bases ionize completely in solution to produce hydroxide ions, while strong acids ionize completely to produce hydrogen ions (H+). They are not the same.


Question 10:

A universal indicator has the ability to indicate the full range of pH values on the pH scale by color changes. Acids change the color of universal indicator towards:

A. Yellow, green, and blue colors.

B. Green, blue, and purple colors.

C. White, grey, and black colors.

D. Yellow, orange, and red colors

The Correct Answer is D.

A. Yellow, green, and blue colors: This sequence of colors does not represent the typical color changes observed in universal indicator when exposed to acidic solutions. Universal indicator typically changes from green/blue in neutral solutions to yellow/orange/red in acidic solutions.

B. Green, blue, and purple colors: Purple is not typically observed in the color changes of universal indicator in acidic solutions. Universal indicator usually transitions from green/blue in neutral solutions to yellow/orange/red in acidic solutions.

C. White, grey, and black colors: These colors are not typically observed in the color changes of universal indicator. Universal indicator undergoes a series of color changes from green/blue to yellow/orange/red in acidic solutions.

D. Yellow, orange, and red colors. (Correct Answer): Universal indicator typically changes from green/blue in neutral solutions to yellow/orange/red in acidic solutions. This sequence of colors represents the typical color changes observed in universal indicator when exposed to acidic solutions.